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Abstract—Pain modulation of dopamine-producing nuclei is known to contribute to the affective component of
chronic pain. However, pain modulation of pain-related cortical regions receiving dopaminergic inputs is under-
studied. The present study demonstrates that mice with chronic inflammatory injury of the hind paws develop per-
sistent mechanical hypersensitivity and transient anxiety. Peripheral inflammation induced by injection of
complete Freund’s Adjuvant (CFA) induced potentiation of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
receptor (AMPAR) currents with a presynaptic component in layer II/III of the ACC. After four days of inflammatory
pain, the dopamine-mediated inhibition of AMPAR currents was significantly reduced in the ACC. Furthermore,
dopamine enhanced presynaptic modulation of excitatory transmission, but only in mice with inflammatory pain.
High-performance liquid chromatography (HPLC) analysis of dopamine tissue concentration revealed that dopa-
mine neurotransmitter concentration in the ACC was reduced three days following CFA. Our results demonstrate
that inflammatory pain induces activity-dependent changes in excitatory synaptic transmission and alters
dopaminergic homeostasis in the ACC.� 2022 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

There is evidence for the involvement of central

dopaminergic circuits in pain modulation (Navratilova

et al., 2012; Elman and Borsook, 2016; Mitsi and

Zachariou, 2016; Serafini, et al., 2020). Altered dopamine

receptor binding and dopamine metabolism have been

observed in patients with burning mouth syndrome

(Hagelberg et al., 2003b), atypical facial pain (Hagelberg

et al., 2003a), fibromyalgia (Wood et al., 2007), and

chronic back pain (Martikainen et al., 2015). Accordingly,

chronic pain conditions may cause homeostatic changes

in central dopaminergic pathways. Animal studies

demonstrate that pain modulates midbrain dopaminergic
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neurons and may reduce dopamine output (Huang

et al., 2019a, b; Markovic et al., 2021; Yang et al.,

2021). However, the effect of inflammatory injury-

induced pain on dopamine function in cortical regions

associated with pain and learning remains mostly

unexplored.

The anterior cingulate cortex (ACC) is intimately

involved in the sensory and affective components of

pain (Rainville et al., 1999; Zhuo, 2016). In humans,

ACC neurons are activated by noxious stimuli (Apkarian

et al., 2005), while rodent experiments have demon-

strated synaptic potentiation of ACC neurons in mice with

inflammatory or nerve injury-induced pain (Zhuo, 2008;

Koga et al., 2015; Bliss et al., 2016). This suggests that

pain may be stored as memories in the glutamatergic

synapses of ACC neurons (Zhuo, 2008; Koga et al.,

2015; Bliss et al., 2016). In this regard, the ACC has a

functional role in the top-down descending facilitation of

target areas (Zhuo, 2008; Beier et al., 2015; Chen et al.,

2018; Smith et al., 2021), including direct facilitatory pro-

jections to dopaminergic neurons within the ventral

tegmental area (VTA) (Beier et al., 2015).

As part of the mesocorticolimbic dopaminergic

pathways, activation of the ACC induces burst firing of

VTA neurons (Gariano and Groves, 1988), and VTA acti-

vation inhibits nociceptive responses in the ACC triggered

by noxious mechanical stimuli (Sogabe et al., 2013). In
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addition, direct microinjection of dopamine into the ACC

produces antinociceptive effects in neuropathic mice

(Lopez-Avila et al., 2004), and dopamine receptor activa-

tion in ACC slices inhibits a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) currents that

are associated with pain processing (Bliss et al., 2016;

Darvish-Ghane et al., 2016; Darvish-Ghane et al.,

2020). More recent studies have demonstrated that

endogenous dopamine release mediated by optogenetic

stimulation of VTA projections to the prelimbic cortex is

also antinociceptive (Huang et al., 2020), and activation

of D1 receptors in the ACC alleviates the sensory and

affective components of neuropathic pain in rodents

(Lançon et al., 2021). Since the ACC plays an integral role

in pain processing, we sought to investigate the effect of

chronic inflammatory pain on local modulation of AMPAR

transmission by dopamine in the ACC of mice.

In the present study, we used an electrophysiological

approach to measure AMPAR transmission and

dopaminergic modulation of AMPAR excitatory

postsynaptic currents (EPSC) in the ACC of mice

injected with complete Freund’s adjuvant (CFA), an

inflammatory pain stimulus. CFA-treated mice displayed

persistent mechanical hypersensitivity and anxiety-like

behavior three days following injection as measured by

the elevated plus-maze (EPM) and open field test. The

anxiety phenotype was not present in mice injected with

CFA and tested four days later. Input-output responses

of ACC pyramidal neurons showed that AMPAR

currents were potentiated three days post-CFA injection

compared with naı̈ve mice; however, no difference was

observed between three- and four-days post-CFA when

compared directly. Furthermore, dopamine-mediated

inhibition of AMPAR postsynaptic currents was reduced

four-days post-CFA when compared with three-days

post-CFA and naı̈ve mice. Finally, HPLC analysis

showed decreased dopamine concentrations, but not its

metabolite, DOPAC in the ACC of mice three days post-

CFA treatment. Our results demonstrate that

inflammatory injury induces an activity-dependent

decrease in dopaminergic function in the ACC of mice.
EXPERIMENTAL PROCEDURES

Animals

Male C57BL/6J mice were purchased from Jackson

Laboratory (Bar Harbor, ME); aged 6–8 weeks for

behavior and 4–6 weeks for electrophysiology

experiments. All mice were housed in groups of four

upon arrival and allowed one week to habituate before

experiments started. The housing facility was

temperature-controlled (20 ± 1 �C) with a 12:12 h

normal light: dark cycle in mouse rooms. All cages

contained a cotton nesting square and crinkled paper

bedding. Mice were provided with unrestricted access to

food (Harlan Teklad 8604) and water. All procedures

were carried out according to the Canadian Council on

Animal Care (CCAC) guidelines and approved by the

University of Toronto’s Animal Care Committee.
CFA model of inflammatory pain

Complete Freund’s adjuvant (CFA; 20 ll) was injected

intraplantar into both hind paws using a 100-ll
microsyringe with a 30-gauge needle as we have

previously done (Darvish-Ghane et al., 2020). Bilateral

hind paw injections were used because this allowed us

to record from both hemispheres for electrophysiology

studies. In addition, the ACC is bilaterally activated in uni-

lateral injury models of neuropathic (Zhao et al., 2018)

and inflammatory pain (Cao et al., 2009). Thus, bilateral

hind paw injections allowed us to treat each hemisphere

equally and removed ipsilateral/contralateral specific

effects as this was not the main goal of the present paper.

Behavioral study design

Mice were randomized to condition using within-cage

randomization, and all behavioral experiments were

performed by an experimenter blinded to CFA condition.

Given that the open field and elevated plus maze tests

cannot be repeated on the same mouse, each test

environment was novel and independent mice were

used for each timepoint of the behavioral experiments.

Mechanical threshold testing

Mice were placed on a metal mesh platform within small

(9 � 5 � 5 cm high) testing cubicles made of Plexiglas

and allowed to habituate for 1 h before testing. We used

the plantar anesthesiometer (Ugo Basile, Gemonia,

Italy) to assess mechanical sensitivity by measuring

paw withdrawal responses. This device slowly increases

pressure until the mouse withdraws its hind paw and the

force (g) is displayed.

Elevated plus maze (EPM)

The EPM is a commonly used test of anxiety behavior in

mice. In our experiments, the EPM was performed for

5 min with mice initially placed in the center of the

maze. Mice were video tracked, and the time spent in

the open arm was measured visually as we have

previously done (Ramzan et al., 2020). Light levels were

recorded to be 150 lux and 130 lux in the open and closed

arms, respectively (Light Meter; LuxMaster 11010067).

Open field test (OFT)

The OFT was performed by placing each mouse in the

corner of a large Plexiglas box

(40 cm � 40 cm � 40 cm) in the center of a normally lit

(400 lux) room and videotaping their behavior for

10 min. The time spent in the center (25 % of the total

surface) and total distance were analyzed using Noldus

Ethovision.

Tissue preparation for electrophysiology

Brain slices were prepared as described previously

(Darvish-Ghane et al., 2016; Yamanaka et al., 2016).

Mice were exposed to 5 % isoflurane, and brains were



Fig. 1. Behavioral changes and ACC excitatory synaptic potentiation in mice with CFA-induced inflammatory pain. (A) CFA-induced

mechanical sensitivity in mice three days (3d-CFA) and four days (4d-CFA) following hind paw injection (one-way ANOVA, F2,23 = 59.86,

p < 0.001). (B) Mice spend significantly less time in the open arms of the elevated plus maze in the 3d-CFA group than naı̈ve and 4d-CFA (one-way

ANOVA, F2,20 = 6.4, p < 0.01). (C) Mice spend significantly less time in the center of the open field in the 3d-CFA group than naı̈ve and 4d-CFA

(one-way ANOVA, F2,21 = 9.93, p < 0.001). (D) No significant difference between the groups for total distance traveled in the open field (one-way

ANOVA, F2,23 = 2.6, p = 0.1). Violin plots in A–D show distribution and individual data points with solid black lines indicating the upper and lower

quartiles, while dashed lines represent the median. (E) Left: Representative paired pulse ratio (PPR) traces at intervals of 50 ms and 100 ms.

Right: The PPR of naı̈ve mice (n = 6) was enhanced compared with 3d-CFA (n = 6) and 4d-CFA (n = 8) mice at the 50 ms interval and 4d-CFA

mice at the 100 ms interval (two-way repeated measures (RM) ANOVA, main effect of CFA: F2,17 = 3.37, p = 0.055; main effect of time interval

(RM): F2,25 = 15,27, p < 0.001; CFA � interval interaction: F4,34 = 2.16, p = 0.09). (F) Left: Representative evoked traces from 6- and 7-volt

stimulation recorded from naı̈ve (n = 5) and 3d-CFA (n = 5) mice. Input-output analysis of eEPSCs from naı̈ve and 3d-CFA mice showed

enhanced responses in 3d-CFA mice at 7-, 8-, and 9-volt stimulation (two-way RM ANOVA, effect of CFA: F1,8 = 63.34, p < 0.0001; effect of

voltage (RM): F2, 17 = 119.8, p < 0.0001; CFA � voltage interaction: F4,32 = 6.3, p < 0.001). (G) Left: Representative evoked from 6- and 7-volt

stimulation recorded from 3d-CFA and 4d-CFA mice. Right: No difference in input–output responses of eEPSCs from 3d-CFA (n = 6) and 4d-CFA

(n = 7) (two-way RM ANOVA, effect of CFA: F1,11 = 0.57, p = 0.46; effect of voltage (RM): F2,17 = 77.73, p < 0.0001; CFA � voltage interaction:

F4,44 = 0.59, p = 0.67). Stars (*) represent posthoc comparisons using Tukey’s multiple comparisons test (*p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001). In panel (E) the red star represents the comparison between naı̈ve and 4d-CFA. For electrophysiology experiments n represents

the number of neurons recorded from three to four mice.
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quickly removed following decapitation. Coronal ACC

brain slices (300 lm) were prepared with a VT1200S tis-

sue slicer (Leica, Concord, ON) in cold (4 �C) artificial

cerebrospinal fluid (aCSF; aerated with 95 % O2; 5 %

CO2): 124 mM NaCl, 4.4 mM KCl, 2 mM CaCl2, 1 mM

MgSO4, 25 mM NaHCO3, 1 mM NaH2PO4, and 10 mM

glucose. Slices recovered for at least 60 min undisturbed

in a submerged holding chamber (25 �C) before

recording.
Whole-cell patch-clamp recording

Whole-cell voltage-clamp recordings from layer II/III

pyramidal neurons of the ACC cg1 region were

performed at room temperature. Slices were placed in a

submerged recording chamber where they were

continuously perfused with aCSF at a rate of 2 ml per

min. Glass pipettes (4–6MX) were made with a

horizontal puller (P1000; Sutter, Novato, CA) and filled

with an internal recording solution: 145 mM K-gluconate,

5 mM NaCl, 1 mM MgCl2, 0.2 mM EGTA, 10 mM

HEPES, 2 mM Mg-ATP, and 0.1 mM Na3-GTP

(adjusted to pH 7.2 with KOH). Neurons were visualized

using a 40X objective on a Zeiss Axioskop FS upright
microscope and voltage-clamped at � 60 mV.

Recordings were performed using a MultiClamp 700B

amplifier (Axon Instruments, Foster City, CA), low-pass

filtered at 1 kHz, and digitized at 10 kHz with Clamplex

(version 10.6; Molecular Devices). A tungsten bipolar

stimulating electrode (Microprobes, Gaithersburg, MD)

was placed in deep layers of the ACC to evoke EPSCs.

AMPAR-mediated EPSCs were isolated by adding

picrotoxin (100 lM) to the aCSF to block GABAA (c-
aminobutyric acid type A)-receptor-mediated inhibitory

synaptic currents. For paired-pulse facilitation

recordings, evoked responses were spaced 50 ms apart

and performed every 30 s. Stable baseline recordings

were obtained for 5 min, followed by perfusion of

pharmacological agents. Only recordings with series

resistance below 25 MX and input/access resistance

that varied less than 15 % were included in the analyses.
Pharmacological agents used for electrophysiology

The drugs used in the electrophysiology experiments

include dopamine hydrochloride, 6-cyano-7-nitroquinoxa

line-2,3-dione (CNQX), and picrotoxin. All drugs were

purchased from Sigma Aldrich, CA.
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High-performance liquid chromatography analysis

Mice were humanely euthanized by decapitation following

exposure to 5 % isoflurane. Brains were rapidly removed,

frozen on liquid nitrogen, and stored at � 80 �C until

processed. The ACC and striatum were microdissected

with each sample suspended in aCSF (30 ll) and

subjected to sonication. Sonicated brain samples (2 ll)
were analyzed for protein levels using the BioRad

protein assay (BioRad, Hercules, CA, United States).

The neurochemical stabilizers, perchloric acid (1 ll of
0.2 N solution), and ascorbic acid (1.0 M) were added to

all samples. Samples were subsequently sonicated and

centrifuged (10,000 rpm) for 10 min at 4 �C.
Supernatants were collected and stored at �80 �C.

HPLC analysis of dopamine and DOPAC were

performed on the supernatant using a BAS 460

MICROBROPE-HPLC system with electrochemical

detection (Bio-analytical Systems Inc., West Lafayette,

IN, USA) as previously described (Chatterjee and

Gerlai, 2009). A Uniget c-18 reverse-phase microprobe

column was used as the stationary phase (BASi, Cat

no. 8949). The mobile phase consisted of buffer (0.1 M

monochloroacetic acid, 0.5 mM Na-EDTA, 0.15 g/L Na-

octylsulfonate and 10 nM sodium chloride, pH 3.1). Stan-

dard dopamine and DOPAC were used to measure and

identify chromatograph peaks. Neurochemicals were

detected using 10 ll of samples, and peaks of dopamine

and DOPAC were compared with standard peaks for con-

centration analysis.
Data and statistical analysis

All statistical analysis was performed using GraphPad

Prism 9. Behavioral and HPLC data were analyzed

using a one-way analysis of variance (ANOVA), using

Tukey’s post-hoc tests corrected for multiple

comparisons. Electrophysiological data were collected

and analyzed using pClamp 9.2 software (Molecular

Devices, San Jose, Ca). A one-way ANOVA with

repeated measures was used for electrophysiology

experiments where a washout phase after drug

application was measured. Dunnett’s case comparison

was used for post-hoc analysis with baseline recording

as the comparison. For baseline analysis, the time

between � 4 min and + 1 min was used for analysis as
3

Fig. 2. Altered synaptic transmission and dopaminergic modulation o
Representative trace (top) and time course (bottom) of eEPSCs from an AC

following the washout (3) of dopamine. Middle: Normalized data showing th

Summary data showing that application of dopamine (50 lM) reversibly inh

p < 0.01). (B) Left: Representative trace (top) and time course (bottom) of e

(1), during (2), and following the washout (3) of dopamine. Middle: Normaliz

recording. Right: Summary data showing that application of dopamine (50 l
F2,12 = 3.42, p < 0.05). (C) Left: Representative trace (top) and time cours

mouse before (1), during (2), and following the washout (3) of dopamine. Mid
throughout the recording. Right: Summary data showing that application o

measures ANOVA, F2,12 = 3.13, p = 0.07). (D) Comparison of eEPSCs befo

4d-CFA mic. (E) Percentage of dopamine inhibition is significantly less in

F2,20 = 5.16, p = 0.02). Negative inhibition indicates a potentiated respon

comparisons test (*p < 0.05, **p < 0.01). Bar and symbols represent mean
stable baseline responses are expected to be

present + 1 min following drug application. We used

paired t-test comparisons to determine whether baseline

and drug effects were significantly different in the

absence of the washout phase. For t-test analysis of

unpaired groups, Welch’s correction was used for

unequal sample size between groups. Statistical outliers

were defined via Studentized residuals of more than

three and excluded before analyses were run. Based on

this criterion, two outliers were removed from the EPM

data set, while two outliers were removed from the time

spent in the center of the open field data set. For the

HPLC data, a total of five samples across all groups

and brain regions were classified as outliers. *p < 0.05

was considered statistically significant.
RESULTS

CFA induces behavioral changes and potentiates
ACC glutamatergic currents

Bilateral CFA injections have been used in studies that

measure spontaneous pain responses (Wang et al.,

2017) and the effect of pain on voluntary behavior

(Cobos et al., 2012; Sheahan et al., 2017). In addition,

other models of inflammatory pain have been performed

bilaterally including ankle zymosan, which we have previ-

ously used (Sorge et al., 2014). Thus, mice were injected

with CFA in both hind paws, which we validated by testing

mechanical sensory thresholds and behavior on the ele-

vated plus maze (EPM) as a measure of anxiety. CFA

induced a significant decrease in paw withdrawal thresh-

olds three- and four-days post-CFA (3d-CFA and 4d-

CFA, respectively) relative to the naı̈ve group (Fig. 1

(A)). In addition, 3d-CFA mice displayed a significant

decrease in time spent in the open arms of the EPM rela-

tive to naı̈ve mice; however, this anxiety-like phenotype

was not present in 4d-CFA mice (Fig. 1(B)). Furthermore,

mice were tested using the open field test (OFT) as

another proxy of anxiety and to measure locomotion.

CFA treatment significantly reduced the time spent in

the center of the OFT in the 3d-CFA group (Fig. 1(C)).
Total distance traveled was not different between the

groups (Fig. 1(D)). These results indicate that inflamma-

tion induces mechanical sensitivity and an anxiety pheno-

type that is present three, but not four days following CFA.
f EPSCs in the ACC of mice with inflammatory pain. (A) Left:
C neuron recorded from a naı̈ve mouse before (1), during (2), and

e time course of eEPSC responses throughout the recording. Right:
ibits eEPSCs (one-way repeated measures ANOVA, F2,12 = 9.79,

EPSCs from an ACC neuron recorded from a 3d-CFA mouse before

ed data showing the time course of eEPSC responses throughout the

M) reversibly inhibits eEPSCs (one-way repeated measures ANOVA,

e (bottom) of eEPSCs from an ACC neuron recorded from a 4d-CFA

dle: Normalized data showing the time course of eEPSC responses

f dopamine (50 lM) marginally inhibits eEPSCs (one-way repeated

re, during, and following dopamine application in naı̈ve, 3d-CFA, and

4d-CFA compared with naı̈ve and 3d-CFA mice (one-way ANOVA,

se. Stars (*) represent posthoc comparisons using Tukey’s multiple

± SEM.
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Next, we used whole-cell patch-clamp recordings of

ACC pyramidal neurons in layers II/III to determine

whether CFA altered synaptic transmission in ACC

neurons. First, we measured the paired-pulse ratio
(PPR) of evoked excitatory postsynaptic currents

(eEPSC) as a measure of glutamate presynaptic

release probability (Zhao et al., 2006; Koga et al., 2015)

from naı̈ve and CFA-injected mice. Consistent with previ-



Fig. 4. Dopamine concentration in the ACC and striatum of mice with inflammatory pain. (A) In
comparison to naı̈ve mice, there is a significant decrease in the dopamine concentration (ng/mg)

three days post-CFA (3d-CFA) injection in the ACC (one-way ANOVA, F2,19 = 3.28, p < 0.05). (B)
No significant change in dopamine concentration in the striatum of CFA-treated mice (one-way

ANOVA, F2,24 = 0.30, p = 0.74). (C) No change in DOPAC levels in the ACC of CFA-treated mice

(one-way ANOVA, F2,18 = 1.17, p = 0.33). (D) No change in DOPAC levels in the striatum in CFA-

treated mice (one-way ANOVA, F2,18 = 2.62, p = 0.1). Violin plots in A–D show distribution and

individual data points with solid black lines indicating the upper and lower quartiles, while dashed lines

represent the median. *p < 0.05, compared to naive mice.

3

Fig. 3. Paired pulse responses are enhanced by dopamine application in CFA-treated (A) Left:
(bottom) for paired pulse ratio (PPR) of eEPSCs from an ACC neuron recorded from a naı̈ve mouse befo

Middle: Normalized data showing the time course for PPR of eEPSC responses throughout the reco

application of dopamine (50 lM) does not change PPR in the ACC of naı̈ve mice (paired t-test, t6 = 1,27,

trace (top) and time course (bottom) for paired pulse ratio (PPR) of eEPSCs from an ACC neuron reco

during (2) dopamine application. Middle: Normalized data showing the time course for PPR of eEPSC r

Summary data showing that application of dopamine (50 lM) enhances the PPR in the ACC of 3d-CF

n = 5). (C) Left: Representative trace (top) and time course (bottom) for paired-pulse ratio (PPR) of eEP

4d-CFA mouse before (1) and during (2) dopamine application. Middle: Normalized data showing the

throughout the recording. Right: Summary data showing that application of dopamine (50 llM) enha

(paired t-test, t5 = 2.84, p < 0.05, n = 6). *p < 0.05. Bar and symbols represent mean ± SEM.
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ous reports (Zhao et al., 2006;

Koga et al., 2015), ACC neurons

had a significantly lower PPR in

CFA-injected mice than naı̈ve mice

at all three inter-stimulus intervals

(Fig. 1(E), indicating potentiation

of presynaptic glutamate release

in mice with inflammatory pain.

However, there was no difference

between 3d-CFA and 4d-CFA

slices. Next, input–output

responses of layer II-III pyramidal

neurons in the ACC demonstrated

enhanced AMPAR responses in

the 3d-CFA group compared with

naı̈ve mice, as measured by plot-

ting the stimulation intensity (input)

vs the eEPSC amplitude (output)

(Fig. 1(F)). Albeit, directly compar-

ing 3d-CFA and 4d-CFA indicated

no differences between these

groups on input–output responses

(Fig. 1(G)).
Dopamine-mediated inhibition of
eEPSCs is reduced four days
following CFA injection

Since several recent studies have

shown disruption in dopamine in

frontal cortical circuits following

nerve injury (Huang et al., 2020;

Liu et al., 2020; Lançon et al.,

2021), we next sought to determine

whether dopamine-mediated inhibi-

tion of AMPAR transmission was

altered in CFA injected mice. After

obtaining five min of stable baseline

recording, dopamine (50 mM) was

applied for 10 min and washed out

by applying fresh aCSF (Fig. 2(A
and D)). Application of dopamine

significantly inhibited eEPSCs in

ACC slices prepared from naı̈ve

and 3d-CFA mice, with responses

returning to baseline following
Representative trace (top) and time course

re (1) and during (2) dopamine application.

rding. Right: Summary data showing that

p = 0.25, n = 7). (B) Left: Representative
rded from a 3d-CFA mouse before (1) and

esponses throughout the recording. Right:
A mice (paired t-test, t4 = 2.78, p < 0.05,

SCs from an ACC neuron recorded from a

time course for PPR of eEPSC responses

nces the PPR in the ACC of 3d-CFA mice
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dopamine washout (Fig. 2(A, B, D)). However, in mice

from the 4d-CFA group, dopamine-induced marginal inhi-

bition that was not significantly different than baseline and

the washout phase (Fig. 2(C and D)). Dopamine-

mediated inhibition of AMPAR eEPSCs in the 4d-CFA

group was significantly lower than the inhibition of

eEPSCs in naı̈ve mice (Fig. 2(E)).
Dopamine modulates presynaptic transmission in
mice with inflammation

Previous work suggests that dopamine-mediated

inhibition of eEPSCs during basal transmission in naı̈ve

mice is mediated by postsynaptic G-proteins in the ACC

(Darvish-Ghane et al., 2016; Darvish-Ghane et al.,

2020). However, the role of dopamine-mediated presy-

naptic modulation of glutamatergic transmission in the

ACC is unknown. Thus, we next tested whether dopamine

modulates presynaptic transmission in naı̈ve and CFA-

treated mice. Dopamine application did not affect PPR

in naı̈ve mice (Fig. 3(A)). However, dopamine significantly

increased PPR in 3d-CFA and 4d-CFA mice (Fig. 3(B,
C)). These results demonstrate that inflammation acti-

vates presynaptic dopaminergic mechanisms to modulate

glutamatergic transmission in the ACC.
Inflammatory pain induces time-dependent changes
in the ACC dopamine concentration

Activation of the ACC has been shown to enhance VTA

activity (Gariano and Groves, 1988), and subpopulations

of VTA dopaminergic neurons receive direct glutamater-

gic synapses from the ACC (Beier et al., 2015). Since

CFA treatment increased ACC neuronal output, and acti-

vated a presynaptic dopaminergic mechanism to modu-

late glutamatergic transmission in the ACC, we next

examined if CFA treatment altered endogenous dopa-

mine concentration in the ACC. We used high-

performance liquid chromatography (HPLC) to measure

concentrations of dopamine and 3,4-

dihydroxyphenylacetic acid (DOPAC), the metabolite of

dopamine in the ACC and striatum (Chatterjee and

Gerlai, 2009; Jensen et al., 2017). Since cortical dopa-

mine concentrations may be low, we included the stria-

tum, a brain region with high dopaminergic activity, as

an internal control for HPLC neurotransmitter peak detec-

tion. Our results showed significantly lower dopamine

concentration in the ACC of 3d-CFA mice (Fig. 4(A)). In
the ACC, dopamine concentration was no different in

4d-CFA mice compared with the naı̈ve group (Fig. 4

(A)). In the striatum, we did not observe a significant

change in dopamine concentrations in CFA-treated mice

(Fig. 4(B)). Analysis of DOPAC, a dopamine metabolite

revealed no significant changes across both brain regions

(Fig. 4(C, D)). Hence, in the ACC there is a significant

decrease in dopamine concentration in 3d-CFA mice,

which coincides with the behavioral anxiety phenotype

of these mice.
DISCUSSION

In the present study, we investigated the effect of CFA-

induced inflammatory pain on ACC dopaminergic

function. CFA treatment induced a robust and persistent

mechanical sensitivity accompanied by anxiety. CFA-

induced anxiety-like behavior was observed in the EPM

three, but not four days following CFA injection, while

mechanical sensitivity was present on days three and

four. Patch-clamp experiments demonstrated enhanced

presynaptic glutamate release and potentiated AMPAR

currents from brain slices of mice with CFA. In naı̈ve

mice, dopamine application reversibly inhibited AMPAR

currents; however, four days following CFA treatment,

dopamine-mediated inhibition of AMPAR currents was

significantly reduced. Moreover, dopamine inhibition of

AMPAR currents in CFA-treated mice may operate

through a presynaptic event based on our PPR analysis

showing that bath application of dopamine enhances

presynaptic glutamate release in the ACC. Further,

dopamine concentration in the ACC was decreased

three days following CFA injection. Collectively these

results demonstrate that peripheral inflammation

induces activity-dependent changes in the ACC that

reduce the inhibitory effect of dopamine in these

neurons and may act to reduce overall dopaminergic

function.

In the ACC, there are spatial differences between

mechanisms of glutamatergic potentiation and function

on pain- and anxiety-related behavior. Presynaptic LTP

of incoming glutamatergic synapses onto ACC neurons

are activated in anxiety states (Koga et al., 2015; Zhuo,

2016), and postsynaptic NMDAR-dependent potentiation

is a characteristic of mechanical sensitivity related to

injury (Li et al., 2010; Chen et al., 2014a, b; Zhuo,

2016). In the 3d-CFA group, an anxiety phenotype was

observed that was not apparent in the 4d-CFA group;

however, both groups showed equal sensitivity to

mechanical stimuli. Moreover, our electrophysiology stud-

ies revealed a comparable decrease in PPR in 3d-CFA

and 4d-CFA slices that was similarly increased by dopa-

mine application. Inhibition of postsynaptic AMPARs by

dopamine was reduced in 4d-CFA slices when compared

with 3d-CFA and naı̈ve slices; however, this was not

associated with a behavioral phenotype. Further experi-

ments examining the correlation between dopamine con-

centrations in the ACC, sensory thresholds, and the level

of anxiety in individual mice will be necessary to under-

stand whether altered dopaminergic transmission in the

ACC is a critical modulator of pain and pain-related

anxiety.

We and others (Koga et al., 2015) have demonstrated

enhanced glutamatergic release probability in the ACC

following inflammatory pain, indicating excessive gluta-

matergic transmission in the ACC. Thus, enhanced gluta-

matergic transmission and dopamine signaling may work

together to desensitize dopamine receptors in the ACC

following inflammatory pain. The persistent activation of

D2DRs has been shown to desensitize dopamine recep-

tors in the mPFC (Bates et al., 1991), while D2DR-
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mediated inhibition of evoked IPSCs in the mPFC was

abolished in a mouse model of cocaine addiction

(Kroener and Lavin, 2010). These results suggest that

persistent dopaminergic activity may alter dopamine

receptor functionality in the mPFC, including the ACC.

Moreover, our HPLC analysis revealed reduced dopa-

mine concentrations in the ACC of 3d-CFA mice, indicat-

ing that CFA may induce a dopamine deficit that

corresponds with the anxiety phenotype of these mice.

Although, it is conceivable that reduced ACC dopamine

in the 3d-CFA group may trigger long-lasting disruption

of ACC dopaminergic signaling which could manifest as

less dopamine-mediated inhibition of AMPAR transmis-

sion in the 4d-CFA group. However, our studied failed to

uncover a behavioral phenotype linked to the reduced

dopaminergic inhibition of EPSCs in the 4d-CFA group.

Pain can inhibit subpopulations of VTA dopaminergic

neurons (Huang et al., 2020; Markovic et al., 2021;

Yang et al., 2021), with specific subpopulations of medial

VTA dopaminergic neurons receiving direct projections

from the ACC (Beier et al., 2015), which are known to

be activated by aversive stimuli (de Jong et al., 2019).

Since CFA treatment activates the ACC, CFA may upreg-

ulate VTA dopaminergic activity of neurons receiving exci-

tatory projections from the ACC (Beier et al., 2015).

Additionally, inflammatory pain enhances the phasic firing

of VTA dopaminergic neurons in response to reward

delivery based on VTA dopaminergic calcium transients

(Markovic et al., 2021). In this regard, ACC projections

onto subpopulations of VTA dopaminergic neurons may

regulate the phasic firing of dopamine neurons and

reward-seeking behavior during chronic pain states. In

line with this, enhanced ACC activity is observed in both

humans and rats following pain relief as a rewarding sig-

nal (Becerra et al., 2013). Reduced dopamine concentra-

tion in the ACC may indicate a deficit of dopamine

signaling, which corresponds with CFA-induced negative

affect. This downregulation may be caused by a dysregu-

lation of homeostatic pathways such as VTA signaling to

decrease ACC dopaminergic activity that has been

observed in rodent chronic pain models (Huang et al.,

2019a, b; Markovic et al., 2021; Yang et al., 2021). How-

ever, our study did not examine altered dopamine con-

centration in the VTA, but rather the striatum and in the

3d-CFA group, striatal dopamine levels did not change.

In conclusion, our results indicate that CFA treatment

causes ACC peripheral mechanical hypersensitivity,

transient anxiety, and plasticity of ACC glutamatergic

and dopaminergic transmission. In the ACC and PFC,

dopaminergic transmission is analgesic in chronic pain

conditions (Lopez-Avila et al., 2004; Huang et al., 2020),

and our results indicate that persistent sensory input

alters ACC dopaminergic function. There is evidence for

crosstalk between dopaminergic and opioidergic sig-

nalling in the ACC as injections of morphine into the

ACC induce conditioned place preference (CPP) and

dopamine release in the nucleus accumbens

(Navratilova et al., 2015), while D1R-mediated dopamin-

ergic signaling in the ACC induces CPP and pain relief

(Lançon et al., 2021). Thus, our study adds to the growing

literature of dopamine in corticolimbic circuits that modu-
late sensory deficits and negative affect. Future studies

are required to investigate the connectivity between the

ACC and dopaminergic transmission to pain and anxiety

during inflammatory states. Ultimately, uncovering the

mechanism that alters cortical dopaminergic transmission

and how this contributes to the development of sensory

and affective pain perception is critical for novel non-

opioid drug development and understanding the broader

utility of dopaminergic drugs that could be used as

adjuncts to current pain therapies.
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