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The Influence of Various Pharmacological Agents
on the Analgesia Induced by an Applied Complex

Magnetic Field Treatment: A Receptor
System Potpourri

L. J. MARTIN AND M. A. PERSINGER

Behavioural Neuroscience Laboratory, Laurentian University,
Ontario, Canada

The opioid receptors have been considered one of the mechanisms by which
the analgesic effects of 30-min exposures to temporally patterned weak (1mT)
magnetic fields are mediated. In 3 separate blocks of experiments, we explored the
interactions between 2 examples of these magnetic fields as well as compounds
that influence L-type calcium (nimodipine) channels, dopamine D2 receptors (haldol,
chlorpromazine), and glucocorticoid receptors (prednisolone). Nimodipine produced
a mild analgesic response that was reduced by exposure to a theta burst pattern
and which did not produce analgesia by itself, but is known to produce long-term
potentiation in hippocampal slices. The analgesia evoked by the burst-firing field was
not reduced by nimodipine. Neither of the D2 antagonists nor prednisolone produced
significant analgesia nor blocked the analgesic effects produced by the burst-firing
field.

Keywords Analgesia; Dopamine; Glucocorticoid; Hotplate; Nimodipine; Rat;
Weak magnetic stimuli.

Introduction

There is a significant body of literature to suggest that temporally patterned
magnetic stimuli can influence measures of endogenous opioids [1], nonopioid stress
[2], ionic species [3], fundamental behavioral processes [4], memory acquisition [5],
and nociceptive thresholds [2, 6, 7]. It has been suggested that the analgesia induced
by a specific temporal pattern of a pulsed magnetic field was mediated via an
opioidergic pathway [7]. This pattern is composed of a burst-firing sequence lasting
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690msec and is presented once every 4 s for 30min. If the analgesia induced by
this magnetic pattern is mediated by the opioid system then the administration
of various pharmacological agents shown to modulate opioid induced analgesia
should affect the vectorial characteristics of this response. In the present study,
we attempted to alter the direction and magnitude of the magnetic field induced
analgesia by administering drugs that affect specific chemical systems.

Tail flick latencies are increased significantly when endomorphin-1 and the
L-type voltage dependent calcium channel (VDCC) blocker nifedipine are micro
injected into the ventral periaqueductal gray of the midbrain [8]. It also has been
reported that the combination of a low dose VDCC blocker (N, P/Q, and L) can
potentiate morphine induced analgesia when the VDCC blockers are administered
spinally [9]. Kavaliers and Ossenkopp [10] have suggested that exposure to magnetic
stimuli affects the functioning of calcium channels and the distribution of calcium
ions, thereby, altering the effects of opiates.

On the other hand components of the dopamine pathway also influence
opioid behaviors. Early studies have indicated that there is lowered analgesia
when the dopamine system is activated and enhanced analgesia with dopamine
receptor antagonists. The dopamine2 (D2� receptor agonist quinpirole [11] and
dopamine precursor l-3,4-dihydroxyphenylalanine [12] both decreased morphine
induced analgesia. The D2 antagonist (-)-sulpiride potentiated the analgesic actions
of the �-selective opioid sulfentanil, while the D1 receptor antagonist SCH23390 did
not influence the opioid induced analgesia [13]. The effects of transcranial magnetic
stimulation have been reported to increase extracellular concentrations of dopamine
when applied acutely [14] but not chronically [15]. These reports may suggest that
dopamine agents may interact with the analgesia induced by our specific pulsed
magnetic field treatment.

There has been considerable evidence that animals subjected to stressful stimuli
including footshock [16], swim-stress [17], immobilization and restriction [18],
and electroconvulsive shock paradigms [19] have produced an opioid reversible
form of analgesia. Recently, it has been demonstrated that morphine exposure
induces a cyclic AMP and protein kinase A-dependent upregulation of neuronal
glucocorticoid receptors (GR) within the spinal cord dorsal horn [20]. Alternatively,
exposure to an extremely-low-frequency oscillating magnetic field with a 37Hz
periodicity similarly reduces the analgesia associated with restraining c57 mice [21].
We hypothesized that if the action of the specific pulsed magnetic fields are opioid
mediated or closely related then an interaction with the glucocorticoid system
should be apparent.

In the present study, we investigated the influence of 3 seemingly unrelated
biological systems (calcium, dopamine, and glucocorticoid) on the analgesia induced
by specific magnetic patterns. We were concerned that researchers have focused
directly on affecting the opioid system and may not be exploring alternative
possibilities. We, then, wanted to determine if pharmacological agents that have
been documented to influence opioid-induced analgesia in a very specific manner
would change the magnetic field induced analgesia in a similar manner. The effects
of the VDCC blocker nimodipine on the levels of analgesia induced by 2 specific
complex magnetic patterns were measured. The influence of 2 unrelated receptor
systems were also studied. Dopamine antagonists (i.e., haldol and chlorpromazine)
and the glucocorticoid agonist prednisolone were administered to potentiate the
analgesia induced by the specific magnetic field pattern.
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Methods

Subjects

Eighty-four male albino Wistar rats, between 4 and 10 months of age were employed
as subjects in the present experiments. They were obtained from Charles River
(Quebec) and had been habituated to a 12:12 L:D cycle (onset between 0700h
to 0800h) within temperature-controlled rooms (20–22�C) for at least one month
before the initiation of the experiments. Rats were monitored daily by experienced
Animal Care Technicians. Purina rat chow and water were available ad libitum. The
rats were maintained, usually 3 per cage, in standard wire cages (40 cm× 24 cm by
18cm, high) in racks.

General Procedure

The general procedure consisted of testing male Wistar rats on an Omnitech thermal
plate maintained at 55�C. The apparatus �26 cm× 26 cm� was enclosed within a
Plexiglas chamber (18 cm high), so the rat could not escape once placed on the
thermal plate. A rat was removed from the thermal device immediately after 2
consecutive hind foot licks occurred or a maximum length of 60 s had elapsed to
minimize tissue damage. Each rat was tested 3 times on the thermal plate each
day for 2 consecutive days. The first trial on the apparatus was the baseline trial.
Immediately after the baseline trial a treatment was administered (i.e., injection of
a pharmacological agent and exposure to either a magnetic field or sham field for
30min). Immediately after the termination of the treatment the rat was tested for
a second time on the thermal plate, and tested a third time 30min later (or 30min
after the removal from the field or sham field). This sequence was repeated for 2
consecutive days for each rat.

Experiment 1: The Injection of the L-Type Voltage Dependent Calcium Channel Blocker
Nimodipine and Exposure to Two Specific Pulsed Complex Magnetic Patterns. In this
experiment, we investigated the possibility that the blockade of the L-type
VDCC may influence thermal latencies induced by 2 specific complex magnetic
patterns. The first complex pattern was a theta-burst stimulation pattern
designed to mimic the firing parameters of hippocampal pyramidal cells during
learning. It has been shown to induce strong long-term potentiation (LTP) in
hippocampal slices [22]. The pattern consisted of 5 pulsed bursts at 100Hz
separated by 140msec (i.e., theta rhythm) and was considered because of
the dense distribution of the opioid receptors in the hippocampal region
[23]. The instrumentation that generated this pattern faithfully reproduced the
theta-burst LTP protocol (i.e., 4 stimuli at 100Hz pulsed at 5Hz) with a
correlation between the electrical signal generated by the computer and the
measured magnetic field ranging between 0.9 to 0.98 as reported in a previous
publication [24]. The second complex magnetic pattern was a burst-firing pattern
[25] modeled after recordings of amygdaloid activity in epileptic patients.
All magnetic exposures were intensity-matched (<1 µT) and are represented in
Fig. 1. The spatial gradients of the area within which the fields were generated
have been published elsewhere [6].

After baseline measurements were taken, nimodipine (5mg/kg) or physiological
saline (0.9%; 1ml/kg) was injected subcutaneously. This was followed by 30min
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Figure 1. a) The theta-burst stimulation patterned waveform. The sequence consisted of
an initial priming pulse followed after 140msec (theta rhythm) by a 100Hz burst. b) The
structure of the burst-firing magnetic pattern was modeled after recordings of amygdaloid
activity in epileptic patients.

exposure to either the burst-firing pattern (n = 4/group; nimodipine and saline),
theta-burst stimulation (n = 5/group), or sham-field conditions (n = 5/group). The
dosage of nimodipine was selected based on unpublished pilot studies and other
observations [26]. Rats were then tested for the appropriate thermal latencies over
2 consecutive days. Both patterns were presented once every 4 s for 30min.

Experiment 2: The Administration of Dopamine Antagonists and the Analgesia Induced
by a Specific Pulsed Magnetic Field. It previously has been demonstrated that
dopamine blockers and/or gene knock out mice targeted for the D2 dopamine
receptor significantly potentiate morphine and opioid induced analgesia [27]. In
the current study, we reasoned that if stimulation of D2 receptors potentiated
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morphine analgesia by the same mechanisms as our magnetic field treatment, then
antagonists should diminish this interaction. The dopamine antagonists, haloperidol
(haldol) (0.4mg/kg), and chlorpromazine (3mg/kg), both of which have high
binding affinity for the D2 receptor [28], or physiological saline (0.9%) was injected
subcutaneously after baseline measurements were taken on the hotplate (55�C). The
rats (n = 4/group) were then exposed for 30min to either a burst-firing magnetic
pattern lasting 690msec presented every 4 s or to the sham-field.

Experiment 3: The Injection of Differing Dosages of a Glucocorticoid Agonist and
Exposure to a Specific Pulsed Magnetic Pattern. The inhibitory effects of magnetic
field application on stress-induced analgesia have been well documented [29]. We
were interested in directly modulating the analgesia induced by the burst-firing
pattern by affecting the apparently complex chemical circuitry, often oversimplified
by the concept of stress, by administering a glucocorticoid agonist. Either,
prednisolone (1, 5, 10mg/kg) or physiological saline (0.9%; 1ml/kg) was injected
immediately following baseline measurements on the hotplate. There were 4 rats per
group.

Statistical Analysis

Multivariate analysis of variance (MANOVA) with 2 levels repeated (day of testing
and trials per day) and 2 between subject levels (pharmacological agent injected
and magnetic field exposure) was the primary statistical tool. The net differences
in response latency (Trial2-Trial1 and Trial3-Trial1) were employed as measures
of analgesia to accommodate for individual differences in baseline responding.
Increased latencies relative to baseline were considered indicators of increased
thermal analgesia. In general, there are no significant differences in analgesic
responding between the 2 days of testing; therefore, we chose to combine the data
from the 2 days (i.e., the means of the baseline trial were averages, and the means
of the subsequent 2 trials were averaged for each trial over the 2 days of testing).
Post hoc analysis were completed with Tukey’s �P < 0�05� test and correlated t-tests
where appropriate. All analyses were completed using SPSS software on a VAX
4000 computer. To decrease repetition, only the statistically significant �p < 0�05�
results of the multivariate analysis of variance are presented. Eta-squared values
��2�, or measures of the amount of variance in changes in analgesic responding
produced by the treatment were included to indicate effect size.

Results

Experiment 1

The injection of nimodipine (5mg/kg) significantly increased thermal latencies
compared to saline injected controls �F�1� 22� = 5�57� p < 0�05� �2 = 20%�. The
application of the burst-firing magnetic pattern also increased significantly the
thermal response times of the rats compared to rats exposed to theta-burst
stimulation or sham-field conditions �F�2� 22� = 4�45� p < 0�05� �2 = 28%�. There
also was a statistically significant interaction between the magnetic field treatment
and the calcium blocker �F�2� 22� = 4�58� p < 0�05� �2 = 28%�. Post hoc analysis
showed that the primary source of the interaction was due to the attenuation of the
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Figure 2. Net changes in thermal response times from baseline on the first day of testing
for rats injected with either saline or nimodipine (5mg/kg) and exposed to either sham
conditions or a theta-burst magnetic pattern or a burst-firing magnetic pattern for 30min.
Vertical bars indicate SEMs.

analgesia induced by the nimodipine in the rats exposed to theta-burst stimulation,
while the burst-firing magnetic pattern had no apparent influence on the nimodipine
treatment. This relationship can be seen in Fig. 2. However, no other interactions
or effects were present [all F < 2�70].

Experiment 2

Figure 3 displays the mean and SEMs of the thermal latencies for the rats that
were exposed to the magnetic field condition (burst-firing vs. sham) and injected
with either a dopamine blocker or physiological saline. The application of the burst-
firing magnetic pattern significantly increased thermal latencies �F�1� 18� = 9�04,
p < 0�01� �2 = 33%�, while the application of the dopamine blockers did not produce
an analgesic response [F�2� 18� = 1�29, n.s.]. The only significant interaction occurred
between the magnetic field treatment and the trial of testing �F�1� 18� = 7�34,
p < 0�05� �2 = 29%�. The thermal latencies were higher 30min after removal from
the magnetic field then immediately after removal from the field. No other
interactions or effects reached statistical significance [all F < 2�70].

Experiment 3

The injection of prednisolone at 1, 5, or 10mg/kg did not significantly alter thermal
thresholds �F�3� 24� = 0�13� p > 0�05�. However, the application of the burst-firing
magnetic pattern did increase thermal thresholds �F�1� 24� = 15�57� p < 0�01� �2 =
39�3%�. There were no statistically significant interactions between the 2 treatments
�F�3� 24� = 0�66� p > 0�05�. The means and SEMs of the thermal latencies for the
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Figure 3. Net changes in thermal response latencies from baseline of animals injected with
haldol, chlorpromazine (chlor) or physiological saline and exposed to either sham conditions
or the burst-firing magnetic pattern. SEMs are represented.

animals injected with prednisolone and exposed to a magnetic field condition are
represented in Fig. 4.

Discussion

A number of studies have suggested that the analgesic properties of specific
temporal patterns of magnetic fields can be influenced by endogenous and

Figure 4. Net changes in thermal responding from baseline are represented for rats injected
with either 1, 5, 10mg/kg of prednisolone or physiological saline, and exposed to either the
burst-firing magnetic field of sham field. Vertical bars indicate SEMs.
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exogenous opioids [7, 30, 31]. In this study, we examined the possibility that
the analgesia induced by specific pulsed magnetic fields could be influenced by
compounds that have been known to alter the analgesia induced by opiate
compounds. Kavaliers and Ossenkop [32] have reported that the Ca2+ chelator
EGTA blocked the daytime and locomotor effects of morphine, while the Ca2+

ioonophore A23187 potentiated the inhibitory actions. They have also suggested [10]
that exposure to magnetic stimuli affects the functioning of calcium channels and
the distribution of calcium ions, thereby, altering the effects of opiates. The L-type
Ca2+ channel antagonist nifedipine (a dyhydropyridine) reduced inhibitory analgesic
effects induced by exposure to a 0.5Hz rotating magnetic field. In the present study,
the analgesic effects of the burst-firing pulse did not interact with the L-type VDCC
blocker nimodipine, but an interaction with the theta-burst pattern was evident.
Extrapolation from the aforementioned reports and the current study may suggest
that Ca2+ involvement may be critical for opioid analgesia and magnetic stimuli that
possess a similar mechanism.

The administration of nimodipine without a magnetic field treatment elevated
thermal thresholds and suggests this drug may have slight analgesic properties.
However, exposure to the theta-burst magnetic pattern reduced this mild analgesic
effect. Initially theta-burst stimulation was used because it was designed to mimic
the firing parameters of hippocampal pyramidal cells and there are vast distributions
of �-opioid receptors in the hippocampal region [23]. Exposure to the same
theta-burst magnetic field has been shown to strongly attenuate freezing behaviour
during contextual fear conditioning [33], which suggests that the timing of this
magnetic pattern hinders the memory process.

However, the injection of nimodipine (5mg/kg) has been shown to enhance
spatial [34] and sequential [24] memory rather than hinder it. One explanation from
our results is that the actions of theta-burst-stimulation are mediated through or
can be influenced by the L-type VDCC. The theta-burst stimulation may increase
extracellular calcium concentrations. We did not expect the theta-burst stimulation
to enhance (at least thermal) nociceptive sensitivity. This may be the first evidence
that theta-burst magnetic stimulation designed to mimic hippocampal processes may
actually increase calcium concentrations and decrease nociceptive thresholds.

Since we were interested in elevating nociceptive thresholds and the analgesic
activities of specific patterns of magnetic fields, we chose to use the burst-firing
magnetic pattern in our other experiments and determine if its analgesic actions
could be influenced by receptor systems known to influence opioid analgesia. The
first receptor system we choose was the dopamine receptor system, more specifically
the D2 receptor. We chose the D2 receptor because it has been shown to greatly
enhance morphine and opioid analgesia, while the D1 receptor did not display
these properties [13]. The administration of haldol and chlorpromazine did not
enhance analgesia when administered alone. The D2 blockers did not potentiate the
analgesia induced by the burst-firing magnetic pattern. These results are consistent
with the conclusion that the analgesia induced by this specific pulsed magnetic
pattern is not mediated through a �-opioid receptor based mechanism. The dosages
of the dopaminergic agents were selected based upon the results of our pilot studies
as well as the effective dosages as reported by other researchers [35, 36]. It is
possible that the dosages employed in this study were not optimal for potentiating
the analgesia induced by our specific pulsed magnetic field treatment. It should
be noted that when haldol was administered in conjunction with the burst-firing
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magnetic pattern there was increased variability in this group. Often, increased
within-group variability due to treatments indicates only the more vulnerable rats
were responding to the dose employed. It is unlikely that the analgesia evoked by
the specific pulsed burst-firing magnetic pattern is mediated only through an opioid
based mechanism. Receptors other than the �-opioid receptor have been shown to
be influenced by dopaminiergic compounds including the 	 [37], 
 [26], and � [38]
and cannot be ruled out.

Our final attempt to influence the magnetic field induced analgesia was to target
the circulating stress hormones since there is considerable evidence to indicate an
interaction between stress-induced analgesia and magnetic fields [21]. We chose
prednisolone because it is a prominent agonist of glucocorticoid receptors and
there had not been any extensive research to indicate the possibility of using this
agent to induce analgesia in this area of research despite the usage of synthetic
glucocorticoids as treatments for inflammatory induced pain in human populations.

The actions of prednisolone did not appear to be analgesic when administered
alone, even at a dose as high as 10mg/kg, and did not seem to significantly
potentiate the analgesia induced by the burst-firing magnetic pattern. This suggests
that the analgesic activities of the burst-firing magnetic pattern are not influenced by
the drug prednisolone. Glucocorticoids may still play a significant role in the work
conducted by Del Seppia and colleagues [21] even though it may not play a role in
the analgesia produced by the burst-firing magnetic pulse. Stress hormones such as
corticosterone have been shown to be altered in response to magnetic stimuli [39],
although the intensity levels were in the order of 200X greater than the ones used
in our study.
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